3.413 \(\int \frac{\cos ^6(c+d x)}{a-b \sin ^4(c+d x)} \, dx\)

Optimal. Leaf size=155 \[ -\frac{\left (\sqrt{a}-\sqrt{b}\right )^{5/2} \tan ^{-1}\left (\frac{\sqrt{\sqrt{a}-\sqrt{b}} \tan (c+d x)}{\sqrt [4]{a}}\right )}{2 a^{3/4} b^{3/2} d}+\frac{\left (\sqrt{a}+\sqrt{b}\right )^{5/2} \tan ^{-1}\left (\frac{\sqrt{\sqrt{a}+\sqrt{b}} \tan (c+d x)}{\sqrt [4]{a}}\right )}{2 a^{3/4} b^{3/2} d}-\frac{\sin (c+d x) \cos (c+d x)}{2 b d}-\frac{5 x}{2 b} \]

[Out]

(-5*x)/(2*b) - ((Sqrt[a] - Sqrt[b])^(5/2)*ArcTan[(Sqrt[Sqrt[a] - Sqrt[b]]*Tan[c + d*x])/a^(1/4)])/(2*a^(3/4)*b
^(3/2)*d) + ((Sqrt[a] + Sqrt[b])^(5/2)*ArcTan[(Sqrt[Sqrt[a] + Sqrt[b]]*Tan[c + d*x])/a^(1/4)])/(2*a^(3/4)*b^(3
/2)*d) - (Cos[c + d*x]*Sin[c + d*x])/(2*b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.285637, antiderivative size = 155, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {3224, 1170, 199, 203, 1166, 205} \[ -\frac{\left (\sqrt{a}-\sqrt{b}\right )^{5/2} \tan ^{-1}\left (\frac{\sqrt{\sqrt{a}-\sqrt{b}} \tan (c+d x)}{\sqrt [4]{a}}\right )}{2 a^{3/4} b^{3/2} d}+\frac{\left (\sqrt{a}+\sqrt{b}\right )^{5/2} \tan ^{-1}\left (\frac{\sqrt{\sqrt{a}+\sqrt{b}} \tan (c+d x)}{\sqrt [4]{a}}\right )}{2 a^{3/4} b^{3/2} d}-\frac{\sin (c+d x) \cos (c+d x)}{2 b d}-\frac{5 x}{2 b} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^6/(a - b*Sin[c + d*x]^4),x]

[Out]

(-5*x)/(2*b) - ((Sqrt[a] - Sqrt[b])^(5/2)*ArcTan[(Sqrt[Sqrt[a] - Sqrt[b]]*Tan[c + d*x])/a^(1/4)])/(2*a^(3/4)*b
^(3/2)*d) + ((Sqrt[a] + Sqrt[b])^(5/2)*ArcTan[(Sqrt[Sqrt[a] + Sqrt[b]]*Tan[c + d*x])/a^(1/4)])/(2*a^(3/4)*b^(3
/2)*d) - (Cos[c + d*x]*Sin[c + d*x])/(2*b*d)

Rule 3224

Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(a + 2*a*ff^2*x^2 + (a + b)*ff^4*x^4)^p/(1 + ff^2*x^2)^(m/2 + 2
*p + 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p]

Rule 1170

Int[((d_) + (e_.)*(x_)^2)^(q_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[ExpandIntegrand[(d + e*x
^2)^q/(a + b*x^2 + c*x^4), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a
*e^2, 0] && IntegerQ[q]

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cos ^6(c+d x)}{a-b \sin ^4(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right )^2 \left (a+2 a x^2+(a-b) x^4\right )} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \left (-\frac{1}{b \left (1+x^2\right )^2}-\frac{2}{b \left (1+x^2\right )}+\frac{3 a+b+2 (a-b) x^2}{b \left (a+2 a x^2+(a-b) x^4\right )}\right ) \, dx,x,\tan (c+d x)\right )}{d}\\ &=-\frac{\operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right )^2} \, dx,x,\tan (c+d x)\right )}{b d}+\frac{\operatorname{Subst}\left (\int \frac{3 a+b+2 (a-b) x^2}{a+2 a x^2+(a-b) x^4} \, dx,x,\tan (c+d x)\right )}{b d}-\frac{2 \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\tan (c+d x)\right )}{b d}\\ &=-\frac{2 x}{b}-\frac{\cos (c+d x) \sin (c+d x)}{2 b d}-\frac{\operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\tan (c+d x)\right )}{2 b d}+\frac{\left (2 a-2 b+\frac{(a-b) (a+b)}{\sqrt{a} \sqrt{b}}\right ) \operatorname{Subst}\left (\int \frac{1}{a-\sqrt{a} \sqrt{b}+(a-b) x^2} \, dx,x,\tan (c+d x)\right )}{2 b d}+\frac{\left (2 a-2 b-\frac{a^2-b^2}{\sqrt{a} \sqrt{b}}\right ) \operatorname{Subst}\left (\int \frac{1}{a+\sqrt{a} \sqrt{b}+(a-b) x^2} \, dx,x,\tan (c+d x)\right )}{2 b d}\\ &=-\frac{5 x}{2 b}-\frac{\left (\sqrt{a}-\sqrt{b}\right )^{5/2} \tan ^{-1}\left (\frac{\sqrt{\sqrt{a}-\sqrt{b}} \tan (c+d x)}{\sqrt [4]{a}}\right )}{2 a^{3/4} b^{3/2} d}+\frac{\left (\sqrt{a}+\sqrt{b}\right )^{5/2} \tan ^{-1}\left (\frac{\sqrt{\sqrt{a}+\sqrt{b}} \tan (c+d x)}{\sqrt [4]{a}}\right )}{2 a^{3/4} b^{3/2} d}-\frac{\cos (c+d x) \sin (c+d x)}{2 b d}\\ \end{align*}

Mathematica [A]  time = 0.489132, size = 194, normalized size = 1.25 \[ \frac{\frac{2 \sqrt{b} \left (\sqrt{a}+\sqrt{b}\right )^3 \tan ^{-1}\left (\frac{\left (\sqrt{a}+\sqrt{b}\right ) \tan (c+d x)}{\sqrt{\sqrt{a} \sqrt{b}+a}}\right )}{\sqrt{a} \sqrt{\sqrt{a} \sqrt{b}+a}}+\frac{2 \sqrt{b} \left (\sqrt{a}-\sqrt{b}\right )^3 \tanh ^{-1}\left (\frac{\left (\sqrt{a}-\sqrt{b}\right ) \tan (c+d x)}{\sqrt{\sqrt{a} \sqrt{b}-a}}\right )}{\sqrt{a} \sqrt{\sqrt{a} \sqrt{b}-a}}-10 b (c+d x)-b \sin (2 (c+d x))}{4 b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^6/(a - b*Sin[c + d*x]^4),x]

[Out]

(-10*b*(c + d*x) + (2*(Sqrt[a] + Sqrt[b])^3*Sqrt[b]*ArcTan[((Sqrt[a] + Sqrt[b])*Tan[c + d*x])/Sqrt[a + Sqrt[a]
*Sqrt[b]]])/(Sqrt[a]*Sqrt[a + Sqrt[a]*Sqrt[b]]) + (2*(Sqrt[a] - Sqrt[b])^3*Sqrt[b]*ArcTanh[((Sqrt[a] - Sqrt[b]
)*Tan[c + d*x])/Sqrt[-a + Sqrt[a]*Sqrt[b]]])/(Sqrt[a]*Sqrt[-a + Sqrt[a]*Sqrt[b]]) - b*Sin[2*(c + d*x)])/(4*b^2
*d)

________________________________________________________________________________________

Maple [B]  time = 0.125, size = 483, normalized size = 3.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^6/(a-b*sin(d*x+c)^4),x)

[Out]

-1/2/d/b/(a*b)^(1/2)/(((a*b)^(1/2)+a)*(a-b))^(1/2)*arctan((a-b)*tan(d*x+c)/(((a*b)^(1/2)+a)*(a-b))^(1/2))*a^2+
1/d/b*a/(((a*b)^(1/2)+a)*(a-b))^(1/2)*arctan((a-b)*tan(d*x+c)/(((a*b)^(1/2)+a)*(a-b))^(1/2))+1/2/d/b/(a*b)^(1/
2)/(((a*b)^(1/2)-a)*(a-b))^(1/2)*arctanh((-a+b)*tan(d*x+c)/(((a*b)^(1/2)-a)*(a-b))^(1/2))*a^2+1/d/b*a/(((a*b)^
(1/2)-a)*(a-b))^(1/2)*arctanh((-a+b)*tan(d*x+c)/(((a*b)^(1/2)-a)*(a-b))^(1/2))-1/d/(((a*b)^(1/2)+a)*(a-b))^(1/
2)*arctan((a-b)*tan(d*x+c)/(((a*b)^(1/2)+a)*(a-b))^(1/2))+1/2/d*b/(a*b)^(1/2)/(((a*b)^(1/2)+a)*(a-b))^(1/2)*ar
ctan((a-b)*tan(d*x+c)/(((a*b)^(1/2)+a)*(a-b))^(1/2))-1/d/(((a*b)^(1/2)-a)*(a-b))^(1/2)*arctanh((-a+b)*tan(d*x+
c)/(((a*b)^(1/2)-a)*(a-b))^(1/2))-1/2/d*b/(a*b)^(1/2)/(((a*b)^(1/2)-a)*(a-b))^(1/2)*arctanh((-a+b)*tan(d*x+c)/
(((a*b)^(1/2)-a)*(a-b))^(1/2))-1/2/d/b*tan(d*x+c)/(tan(d*x+c)^2+1)-5/2/d/b*arctan(tan(d*x+c))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6/(a-b*sin(d*x+c)^4),x, algorithm="maxima")

[Out]

-1/4*(4*b*d*integrate(-4*(4*(a*b + 3*b^2)*cos(6*d*x + 6*c)^2 + 4*(40*a^2 - 23*a*b + 3*b^2)*cos(4*d*x + 4*c)^2
+ 4*(a*b + 3*b^2)*cos(2*d*x + 2*c)^2 + 4*(a*b + 3*b^2)*sin(6*d*x + 6*c)^2 + 4*(40*a^2 - 23*a*b + 3*b^2)*sin(4*
d*x + 4*c)^2 + 2*(8*a^2 + 41*a*b - 13*b^2)*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*(a*b + 3*b^2)*sin(2*d*x + 2*c
)^2 - ((a*b + 3*b^2)*cos(6*d*x + 6*c) + 2*(5*a*b - b^2)*cos(4*d*x + 4*c) + (a*b + 3*b^2)*cos(2*d*x + 2*c))*cos
(8*d*x + 8*c) - (a*b + 3*b^2 - 2*(8*a^2 + 41*a*b - 13*b^2)*cos(4*d*x + 4*c) - 8*(a*b + 3*b^2)*cos(2*d*x + 2*c)
)*cos(6*d*x + 6*c) - 2*(5*a*b - b^2 - (8*a^2 + 41*a*b - 13*b^2)*cos(2*d*x + 2*c))*cos(4*d*x + 4*c) - (a*b + 3*
b^2)*cos(2*d*x + 2*c) - ((a*b + 3*b^2)*sin(6*d*x + 6*c) + 2*(5*a*b - b^2)*sin(4*d*x + 4*c) + (a*b + 3*b^2)*sin
(2*d*x + 2*c))*sin(8*d*x + 8*c) + 2*((8*a^2 + 41*a*b - 13*b^2)*sin(4*d*x + 4*c) + 4*(a*b + 3*b^2)*sin(2*d*x +
2*c))*sin(6*d*x + 6*c))/(b^3*cos(8*d*x + 8*c)^2 + 16*b^3*cos(6*d*x + 6*c)^2 + 16*b^3*cos(2*d*x + 2*c)^2 + b^3*
sin(8*d*x + 8*c)^2 + 16*b^3*sin(6*d*x + 6*c)^2 + 16*b^3*sin(2*d*x + 2*c)^2 - 8*b^3*cos(2*d*x + 2*c) + b^3 + 4*
(64*a^2*b - 48*a*b^2 + 9*b^3)*cos(4*d*x + 4*c)^2 + 4*(64*a^2*b - 48*a*b^2 + 9*b^3)*sin(4*d*x + 4*c)^2 + 16*(8*
a*b^2 - 3*b^3)*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) - 2*(4*b^3*cos(6*d*x + 6*c) + 4*b^3*cos(2*d*x + 2*c) - b^3 +
2*(8*a*b^2 - 3*b^3)*cos(4*d*x + 4*c))*cos(8*d*x + 8*c) + 8*(4*b^3*cos(2*d*x + 2*c) - b^3 + 2*(8*a*b^2 - 3*b^3)
*cos(4*d*x + 4*c))*cos(6*d*x + 6*c) - 4*(8*a*b^2 - 3*b^3 - 4*(8*a*b^2 - 3*b^3)*cos(2*d*x + 2*c))*cos(4*d*x + 4
*c) - 4*(2*b^3*sin(6*d*x + 6*c) + 2*b^3*sin(2*d*x + 2*c) + (8*a*b^2 - 3*b^3)*sin(4*d*x + 4*c))*sin(8*d*x + 8*c
) + 16*(2*b^3*sin(2*d*x + 2*c) + (8*a*b^2 - 3*b^3)*sin(4*d*x + 4*c))*sin(6*d*x + 6*c)), x) + 10*d*x + sin(2*d*
x + 2*c))/(b*d)

________________________________________________________________________________________

Fricas [B]  time = 5.90708, size = 3996, normalized size = 25.78 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6/(a-b*sin(d*x+c)^4),x, algorithm="fricas")

[Out]

1/8*(b*d*sqrt((a*b^3*d^2*sqrt((25*a^4 + 100*a^3*b + 110*a^2*b^2 + 20*a*b^3 + b^4)/(a^3*b^5*d^4)) - a^2 - 10*a*
b - 5*b^2)/(a*b^3*d^2))*log(5/4*a^4 - 7/2*a^2*b^2 + 2*a*b^3 + 1/4*b^4 - 1/4*(5*a^4 - 14*a^2*b^2 + 8*a*b^3 + b^
4)*cos(d*x + c)^2 + 1/2*(2*a^3*b^4*d^3*sqrt((25*a^4 + 100*a^3*b + 110*a^2*b^2 + 20*a*b^3 + b^4)/(a^3*b^5*d^4))
*cos(d*x + c)*sin(d*x + c) + (5*a^4*b + 15*a^3*b^2 + 11*a^2*b^3 + a*b^4)*d*cos(d*x + c)*sin(d*x + c))*sqrt((a*
b^3*d^2*sqrt((25*a^4 + 100*a^3*b + 110*a^2*b^2 + 20*a*b^3 + b^4)/(a^3*b^5*d^4)) - a^2 - 10*a*b - 5*b^2)/(a*b^3
*d^2)) + 1/4*(2*(a^4*b^2 - 2*a^3*b^3 + a^2*b^4)*d^2*cos(d*x + c)^2 - (a^4*b^2 - 2*a^3*b^3 + a^2*b^4)*d^2)*sqrt
((25*a^4 + 100*a^3*b + 110*a^2*b^2 + 20*a*b^3 + b^4)/(a^3*b^5*d^4))) - b*d*sqrt((a*b^3*d^2*sqrt((25*a^4 + 100*
a^3*b + 110*a^2*b^2 + 20*a*b^3 + b^4)/(a^3*b^5*d^4)) - a^2 - 10*a*b - 5*b^2)/(a*b^3*d^2))*log(5/4*a^4 - 7/2*a^
2*b^2 + 2*a*b^3 + 1/4*b^4 - 1/4*(5*a^4 - 14*a^2*b^2 + 8*a*b^3 + b^4)*cos(d*x + c)^2 - 1/2*(2*a^3*b^4*d^3*sqrt(
(25*a^4 + 100*a^3*b + 110*a^2*b^2 + 20*a*b^3 + b^4)/(a^3*b^5*d^4))*cos(d*x + c)*sin(d*x + c) + (5*a^4*b + 15*a
^3*b^2 + 11*a^2*b^3 + a*b^4)*d*cos(d*x + c)*sin(d*x + c))*sqrt((a*b^3*d^2*sqrt((25*a^4 + 100*a^3*b + 110*a^2*b
^2 + 20*a*b^3 + b^4)/(a^3*b^5*d^4)) - a^2 - 10*a*b - 5*b^2)/(a*b^3*d^2)) + 1/4*(2*(a^4*b^2 - 2*a^3*b^3 + a^2*b
^4)*d^2*cos(d*x + c)^2 - (a^4*b^2 - 2*a^3*b^3 + a^2*b^4)*d^2)*sqrt((25*a^4 + 100*a^3*b + 110*a^2*b^2 + 20*a*b^
3 + b^4)/(a^3*b^5*d^4))) + b*d*sqrt(-(a*b^3*d^2*sqrt((25*a^4 + 100*a^3*b + 110*a^2*b^2 + 20*a*b^3 + b^4)/(a^3*
b^5*d^4)) + a^2 + 10*a*b + 5*b^2)/(a*b^3*d^2))*log(-5/4*a^4 + 7/2*a^2*b^2 - 2*a*b^3 - 1/4*b^4 + 1/4*(5*a^4 - 1
4*a^2*b^2 + 8*a*b^3 + b^4)*cos(d*x + c)^2 + 1/2*(2*a^3*b^4*d^3*sqrt((25*a^4 + 100*a^3*b + 110*a^2*b^2 + 20*a*b
^3 + b^4)/(a^3*b^5*d^4))*cos(d*x + c)*sin(d*x + c) - (5*a^4*b + 15*a^3*b^2 + 11*a^2*b^3 + a*b^4)*d*cos(d*x + c
)*sin(d*x + c))*sqrt(-(a*b^3*d^2*sqrt((25*a^4 + 100*a^3*b + 110*a^2*b^2 + 20*a*b^3 + b^4)/(a^3*b^5*d^4)) + a^2
 + 10*a*b + 5*b^2)/(a*b^3*d^2)) + 1/4*(2*(a^4*b^2 - 2*a^3*b^3 + a^2*b^4)*d^2*cos(d*x + c)^2 - (a^4*b^2 - 2*a^3
*b^3 + a^2*b^4)*d^2)*sqrt((25*a^4 + 100*a^3*b + 110*a^2*b^2 + 20*a*b^3 + b^4)/(a^3*b^5*d^4))) - b*d*sqrt(-(a*b
^3*d^2*sqrt((25*a^4 + 100*a^3*b + 110*a^2*b^2 + 20*a*b^3 + b^4)/(a^3*b^5*d^4)) + a^2 + 10*a*b + 5*b^2)/(a*b^3*
d^2))*log(-5/4*a^4 + 7/2*a^2*b^2 - 2*a*b^3 - 1/4*b^4 + 1/4*(5*a^4 - 14*a^2*b^2 + 8*a*b^3 + b^4)*cos(d*x + c)^2
 - 1/2*(2*a^3*b^4*d^3*sqrt((25*a^4 + 100*a^3*b + 110*a^2*b^2 + 20*a*b^3 + b^4)/(a^3*b^5*d^4))*cos(d*x + c)*sin
(d*x + c) - (5*a^4*b + 15*a^3*b^2 + 11*a^2*b^3 + a*b^4)*d*cos(d*x + c)*sin(d*x + c))*sqrt(-(a*b^3*d^2*sqrt((25
*a^4 + 100*a^3*b + 110*a^2*b^2 + 20*a*b^3 + b^4)/(a^3*b^5*d^4)) + a^2 + 10*a*b + 5*b^2)/(a*b^3*d^2)) + 1/4*(2*
(a^4*b^2 - 2*a^3*b^3 + a^2*b^4)*d^2*cos(d*x + c)^2 - (a^4*b^2 - 2*a^3*b^3 + a^2*b^4)*d^2)*sqrt((25*a^4 + 100*a
^3*b + 110*a^2*b^2 + 20*a*b^3 + b^4)/(a^3*b^5*d^4))) - 20*d*x - 4*cos(d*x + c)*sin(d*x + c))/(b*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**6/(a-b*sin(d*x+c)**4),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6/(a-b*sin(d*x+c)^4),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError